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Definition of a Cyclic Code

Notation
Subscript change: v = v0v1 · · · vn−1 ∈ An.

Definition
Let C ⊆ An. C is cyclic provided for all c = c0c1 · · · cn−1 ∈ C, the
cyclic shift c′ = cn−1c0 · · · cn−2 ∈ C.

Remark
A cyclic code is closed under cyclic shifts, with wrap-around, of
any amount in either direction.
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Polynomial Setting

Notation
Let R be a finite ring with unity. Let x be an indeterminate over
R and n a positive integer.

• R[x ] is the ring of polynomials in x with coefficients in R.

• Let 〈xn − 1〉 denote the two-sided principal ideal of R[x ]
generated by xn − 1. Let PR,n = R[x ]/〈xn − 1〉.

• Define ι : Rn → PR,n as follows: If c = c0c1 · · · cn−1 ∈ Rn, let
ι(c) = c(x) = c0 + c1x + · · ·+ cn−1x

n−1 + 〈xn − 1〉.

Remarks

• Both Rn and PR,n are left (or right) R-modules under
addition and left (or right) scalar multiplication by elements of
R. The map ι is an R-module isomorphism of Rn onto PR,n.

• Images under ι of left-linear (or right-linear) codes in Rn are
left (or right) R-submodules of PR,n.
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Polynomial Setting (cont.)

Remarks

• For c = c0c1 · · · cn−1, let c′ = cn−1c0 · · · cn−2. Then in PR,n,
ι(c′) = xι(c) = ι(c)x .

• So images under ι of left-linear (or right-linear) cyclic codes in Rn

are left (or right) ideals of PR,n.

• We will view left-linear (or right-linear) cyclic codes in either the Rn

setting or as left (or right) ideals of PR,n, whichever is convenient.

• Polynomials c(x) = c0 + c1x + · · · ∈ R[x ] will be written without
bold face font; c(x) = c(x) + 〈xn − 1〉 ∈ PR,n. We will say c(x)
and c(x) correspond.

• Simplification: We write cosets
c(x) = c0 + c1x + · · ·+ cn−1x

n−1 + 〈xn − 1〉 of PR,n without
〈xn − 1〉; so a(x)b(x) = c(x) ∈ PR,n will be written as a polynomial
of degree at most n − 1 with the understanding that we really mean
(a0 + a1x + · · ·+ an−1x

n−1 + 〈xn − 1〉)(b0 + b1x + · · ·+
bn−1x

n−1 + 〈xn − 1〉) = c0 + c1x + · · ·+ cn−1x
n−1 + 〈xn − 1〉.
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Linear Cyclic Codes over Fq

Theorem
Fq[x ] is a unique factorization domain (and therefore a principal
ideal domain) and PFq ,n is a principal ideal ring. Furthermore, the
following are equivalent.

(a) gcd(n, q) = 1.

(b) PFq ,n is semi-simple.

(c) xn − 1 has distinct roots in an extension field of Fq.

Notation
The principal ideal generated by a(x) (or a(x)) in Fq[x ] (or PFq ,n)
will be denoted 〈a(x)〉 (or 〈a(x)〉).
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Linear Cyclic Codes over Fq (cont.)

Theorem
Let C ⊆ PFq ,n be a nonzero linear cyclic code of dimension k .
There exists a polynomial g(x) ∈ C, corresponding to
g(x) ∈ Fq[x ], with the following properties.

(a) g(x) is the unique monic polynomial of minimum degree in C.

(b) C = 〈g(x)〉.
(c) g(x) | (xn − 1) in Fq[x ] and deg g(x) = n − k .

(d) {g(x), xg(x), . . . , xk−1g(x)} is a basis of C.

(e) Every element of C is expressed uniquely as a product
f(x)g(x) where f (x) = 0 or deg f (x) < k .



Linear Cyclic Codes over Fq (cont.)

(f) A generator matrix G of C is

G =


g0 g1 g2 · · · gn−k · · · · · · 0
0 g0 g1 · · · gn−k−1 gn−k · · · 0

...
0 0 0 g0 · · · · · · · · · gn−k



↔


g(x)

xg(x)
. . .

xk−1g(x)


where g(x) = g0 + g1x + · · ·+ gn−kx

n−k .

Remark
g(x) is the generator polynomial of C. The zero cyclic code has
generator polynomial g(x) = xn − 1.
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Linear Cyclic Codes over Fq (cont.)

Two Cases

• gcd(n, q) = 1

• gcd(n, q) 6= 1

Remark
In both cases, the factorization of xn − 1 over Fq is key.
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Linear Cyclic Codes over Fq, gcd(n, q) = 1

Notation and Terminology

• Let t = ordn(q) be the smallest positive integer where
n | (qt − 1); t is the order of q modulo n.

• Fqt is the splitting field of xn − 1 over Fq.

• If γ is a primitive element of Fqt , then α = γ(q
t−1)/n is a

primitive nth root of unity; i.e. α0, α, α2, . . . , αn−1 are the n
distinct roots of xn − 1 in Fqt .

• For s ∈ Z with 0 ≤ s < n, the q-cyclotomic coset of s modulo
n is

Cs,q,n = {s, sq, . . . , sqr−1} (mod n)

where r is the smallest positive integer such that sqr ≡ s
(mod n). Note: r | t and t = |C1,q,n|.
• Define Mαs (x) =

∏
i∈Cs,q,n

(x − αi ).
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Linear Cyclic Codes over Fq, gcd(n, q) = 1 (cont.)

Theorem
The following hold.

(a) The distinct q-cyclotomic cosets modulo n partition
{0, 1, . . . , n − 1}.

(b) Mαs (x) is irreducible over Fq, and xn − 1 =
∏

s Mαs (x) where s
runs through a set of representatives of all distinct q-cyclotomic
cosets modulo n.

(c) If g(x) is the generator polynomial of a linear cyclic code of length
n, then g(x) =

∏
s∈S Mαs (x) where s runs through some subset S

of representatives of distinct q-cyclotomic cosets modulo n.

(d) There are 2m linear cyclic codes of length n where m is the number
of distinct q-cyclotomic cosets modulo n.

Definition
Let g(x) =

∏
s∈S Mαs (x) be the generator polynomial of C. Let

T =
⋃

s∈S Cs,q,n; T is the defining set of C relative to α.
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Linear Cyclic Codes over Fq, gcd(n, q) = 1 (cont.)

Definition
An element e in a ring R is an idempotent provided e2 = e.

Theorem
Let C be an [n, k]q linear cyclic code over Fq with generator
polynomial g(x). The following hold.

(a) There exists a unique idempotent e(x) ∈ PFq ,n such that
C = 〈e(x)〉.

(b) Let h(x) = (xn − 1)/g(x). If 1 = a(x)g(x) + b(x)h(x) in
Fq[x ], then e(x) = a(x)g(x).

(c) g(x) = gcd(e(x), xn − 1).

(d) {e(x), xe(x), . . . , xk−1e(x)} is a basis of C.

Definition
e(x) is the generating idempotent of C.
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Linear Cyclic Codes over Fq, gcd(n, q) = 1 (cont.)

Definition
Let a ∈ Z with gcd(n, a) = 1. Define the map µa,n : PFq ,n → PFq ,n

by µa,n(f(x)) = f(xa). µa,n is a multiplier on PFq ,n.

Example

If f(x) = x + x2 + x4 ∈ PF2,7, then µ−4,7(f(x)) = x3 + x5 + x6.
x + x2 + x4 = x1 + x2 + x4 → x−4 + x−8 + x−16 → x3 + x6 + x5

Theorem
Let a ∈ Z with gcd(n, a) = 1. The following hold.

(a) µa,n is a ring automorphism of PFq ,n.

(b) If e(x) is an idempotent of PFq ,n, so is µa,n(e(x)).

(c) Let C be a linear cyclic code of length n over Fq with
generating idempotent e(x) and defining set T with respect
to α. Then µa,n(C) is a linear cyclic code with generating
idempotent µa,n(e(x)) and defining set a−1T mod n where
aa−1 ≡ 1 (mod n).
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Linear Cyclic Codes over Fq, gcd(n, q) = 1 (cont.)

Theorem
Let C, C1, C2 be linear cyclic codes of length n over Fq with generator
polynomials g(x), g1(x), g2(x), defining sets T ,T1,T2, and generating
idempotents e(x), e1(x), e2(x). The following hold.

(a) C1 ⊆ C2 if and only if g2(x) | g1(x) in Fq[x ] if and only if T2 ⊆ T1.

(b) C1 + C2 is a cyclic code with generator polynomial
gcd(g1(x), g2(x)), defining set T1 ∩ T2, and generating idempotent
e1(x) + e2(x)− e1(x)e2(x).

(c) C1 ∩ C2 is a cyclic code with generator polynomial lcm(g1(x), g2(x)),
defining set T1 ∪ T2, and generating idempotent e1(x)e2(x).

(d) C⊥E is a cyclic code with generating idempotent 1− µ−1,n(e(x)),
defining set {0, 1, . . . , n − 1} \ (−1)T mod n, and generator
polynomial

xk

h(0)
h(x−1)

where k = dimFq (C) and h(x) = (xn − 1)/g(x).
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Binary Linear Cyclic Codes of Length 7

• C0,2,7 = {0}, C1,2,7 = {1, 2, 4}, C3,2,7 = {3, 6, 5}.

• x7 − 1 = x7 + 1 splits in F8, which has a primitive element γ
satisfying γ3 = 1 + γ. α = γ is a primitive 7th root of unity.

• Mα0(x) = 1 + x , Mα1(x) = 1 + x + x3, Mα3(x) = 1 + x2 + x3.
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Binary Linear Cyclic Codes of Length 7 (cont.)

i dim dH
gi (x)
ei (x)

defining set

0 0 − 1 + x7

0
{0, 1, . . . , 6}

1 1 7
1 + x + · · ·+ x6

1 + x + · · ·+ x6
{1, 2, . . . , 6}

2 3 4
1 + x2 + x3 + x4

1 + x3 + x5 + x6
{0, 1, 2, 4}

3 3 4
1 + x + x2 + x4

1 + x + x2 + x4
{0, 3, 5, 6}

4 4 3
1 + x + x3

x + x2 + x4
{1, 2, 4}

5 4 3
1 + x2 + x3

x3 + x5 + x6
{3, 5, 6}

6 6 2
1 + x

x + x2 + · · ·+ x6
{0}

7 7 1
1
1

∅



Linear Cyclic Codes over Fq, gcd(n, q) = 1 (cont.)

Definition
Let N = {0, 1, . . . , n − 1}. T ⊆ N contains a set of s ≤ n
consecutive elements provided there exists b ∈ N such that such
that {b, b + 1, . . . , b + s − 1} mod n ⊆ T .

Theorem (BCH Bound)

Let C be a linear cyclic code of length n over Fq and minimum
distance dH(C) with defining set T relative to α. Assume T
contains δ − 1 consecutive elements for some integer δ ≥ 2. Then

dH(C) ≥ δ.
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Linear Cyclic Codes over Fq, gcd(n, q) = 1 (cont.)

Definition
Let b, δ ∈ Z with 0 ≤ b ≤ n − 1, 2 ≤ δ ≤ n. The BCH code over
Fq of length n and designed distance δ is the linear cyclic code
with defining set

T = Cb,q,n ∪ Cb+1,q,n ∪ · · · ∪ Cb+δ−2,q,n

relative to α. If b = 1, the code is narrow-sense. If n = qt − 1 for
some t, the code is primitive. A BCH code can have more than
one designed distance; the largest designed distance is called the
Bose distance.

Remark
The BCH code with defining set T is an [n, n − |T |, dH ]q code
with dH ≥ δ.
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Linear Cyclic Codes over Fq, gcd(n, q) = 1 (cont.)

Origins of BCH Codes

The binary BCH codes were discovered by A. Hocquenghem1 and
independently by R. C. Bose and D. K. Ray-Chaudhuri2 3 and were
generalized to all finite fields by D. C. Gorenstein and N. Zierler.4

1A. Hocquenghem, “Codes correcteurs d’erreurs”, Chiffres (Paris) 2 (1959),
147–156.

2R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting binary
group codes”, Inform. and Control 3 (1960), 68–79.

3R. C. Bose and D. K. Ray-Chaudhuri, “Further results on error correcting
binary group codes”, Inform. and Control 3 (1960), 279–290.

4D. C. Gorenstein and N. Zierler, “A class of error-correcting codes in pm

symbols”, J. SIAM 9 (1961), 207–214.



Linear Cyclic Codes over Fq, gcd(n, q) = 1 (cont.)

Example (Binary Length 7)

All seven nonzero binary cyclic codes of length 7 are BCH with dH
equalling the Bose designed distance.

• The code C4 has defining set
{1, 2, 4} = C1,2,7 = C1,2,7 ∪ C2,2,7 is a BCH code with b = 1
and designed distance either 2 or 3. C4 is a [7, 4, 3]2 code.

• The code C3 has defining set {0, 3, 5, 6} = C0,2,7 ∪ C3,2,7 =
C6,2,7 ∪ C0,2,7 = C5,2,7 ∪ C6,2,7 ∪ C0,2,7 is a BCH code with
b = 6 and designed distance 3 or b = 5 and designed distance
4. C4 is a [7, 3, 4]2 code.
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Linear Cyclic Codes over Fq, gcd(n, q) = 1 (cont.)

Example (Binary Length 23)

The [23, 12, 7]2 binary Golay code5 has a cyclic formulation as a
narrow-sense BCH code.

• Defining set: {1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12} = C1,2,23 =
C1,2,23 ∪ C2,2,23 ∪ C3,2,23 ∪ C4,2,23.

• Bose designed distance: δ = 5.

• Relative to some α: g(x) = 1 + x + x5 + x6 + x7 + x9 + x11

and
e(x) = x + x2 + x3 + x4 + x6 + x8 + x9 + x12 + x13 + x16 + x18.

Remark
Voyager 1 and Voyager 2 were launched in 1979 to explore
Jupiter, Saturn, and their moons. The General Science and
Engineering (GSE) data was transmitted using a concatenated
code whose outer encoder was the [24, 12, 8]2 Golay code.

5M. J. E. Golay, “Notes on digital coding”, Proc. IRE 37 (1949), 657.
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Linear Cyclic Codes over Fq, gcd(n, q) = 1 (cont.)

Example (Ternary Length 11)

The [11, 6, 5]3 ternary Golay code6 has a cyclic formulation as both
a narrow-sense and a non-narrow-sense BCH code.

• Defining set:
{1, 3, 9, 5, 4} = C1,3,11 = C3,3,11 ∪ C4,3,11 ∪ C5,3,11.

• Bose designed distance: δ = 4.

• Relative to some α: g(x) = −1 + x2 − x3 + x4 + x5 and
e(x) = −(x2 + x6 + x7 + x8 + x10).

6M. J. E. Golay, “Notes on digital coding”, Proc. IRE 37 (1949), 657.
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Linear Cyclic Codes over Fq, gcd(n, q) = 1 (cont.)

Example (Hamming Codes)

Let r ∈ Z with r ≥ 2 and n = (qr − 1)/(q − 1). Let
Hr ,q ∈ Matr×n(Fq) have columns consisting of a nonzero vector
from each 1-dimensional subspace of Fr

q. The [n, n − r , 3]q linear
code Hr ,q with parity check matrix Hr ,q is called a Hamming code.
Not every Hamming code has a cyclic formulation (e.g. H2,3).

Theorem
If gcd(r , q − 1) = 1, then a code monomially equivalent to Hr ,q is
a narrow-sense BCH code with defining set C1,q,n.



Linear Cyclic Codes over Fq, gcd(n, q) = 1 (cont.)

Example (Hamming Codes)

Let r ∈ Z with r ≥ 2 and n = (qr − 1)/(q − 1). Let
Hr ,q ∈ Matr×n(Fq) have columns consisting of a nonzero vector
from each 1-dimensional subspace of Fr

q. The [n, n − r , 3]q linear
code Hr ,q with parity check matrix Hr ,q is called a Hamming code.
Not every Hamming code has a cyclic formulation (e.g. H2,3).

Theorem
If gcd(r , q − 1) = 1, then a code monomially equivalent to Hr ,q is
a narrow-sense BCH code with defining set C1,q,n.



Linear Cyclic Codes over Fq, gcd(n, q) = 1 (cont.)

The [7, 4, 3]2 code H3,2 was discovered in 1947 by R. W.
Hamming.7 This code also appeared in C. E. Shannon’s 1948
seminal paper.8 It was generalized to codes over fields of prime
order by M. J. E. Golay.9

7R. W. Hamming, “Error detecting and error correcting codes”, Bell System
Tech. J. 29 (1950), 10–23.

8C. Shannon, “A mathematical theory of communication”, Bell System
Tech. J., 27 (1948), 379–423 and 623–656.

9M. J. E. Golay, “Notes on digital coding”, Proc. IRE 37 (1949), 657.



An Equivalence Result

The following is a consequence of a theorem due to P. P. Pálfy.10

Theorem
For i ∈ {1, 2}, let Ci be a linear cyclic code of length n over Fq

(gcd(n, q) = 1) with generating idempotent ei (x) and defining set
Ti . Suppose gcd(n, φ(n)) = 1 or n = 4 (with q odd in this case)
where φ is the Euler totient. The following are equivalent.

(a) C1 and C2 are permutation equivalent.

(b) C2 = µa,n(C1) for some 1 ≤ a < n with gcd(a, n) = 1.

(c) e2(x) = µa,n(e1(x)) for some 1 ≤ a < n with gcd(a, n) = 1.

(d) T2 = bT1 mod n for some 1 ≤ b < n with gcd(b, n) = 1.

Implication

Rather than checking n! permutations in Symn, you need to check
no more than φ(n) multipliers.

10P. P. Pálfy, “Isomorphism problem for relational structures with a cyclic
automorphism”, European J. Combin. 8 (1987), 35–43.
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An Equivalence Result (cont.)

Actually!
If T is a union of q-cyclotomic cosets modulo n, then T = qT mod n.
You only need to check one representative b from each q-cyclotomic
coset that has elements relatively prime to n, excluding C1,q,n.

Example (Binary Length 7)
The most general equivalence of binary linear codes is permutation
equivalence. To check equivalence of [7, k]2 cyclic codes, you only need
to check b = 3. C2 and C3 have defining set T2 = {0, 1, 2, 4} and
T3 = {0, 3, 5, 6}. Since T3 = 3T2 mod 7, C2 and C3 are equivalent.

Example (Binary Length 31)
q = 2, n = 31. Check b = 3, 5, 7, 11, 15.

• There are 6 [31, 26]2 cyclic codes. All are equivalent.

• There are 15 [31, 21]2 cyclic codes that split into 3 equivalence
classes.

• There are 20 [31, 16]2 cyclic codes that split into 4 equivalence
classes.
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An Equivalence Result (cont.)

Definition
Suppose you have a class of combinatorial objects on {0, 1, . . . , n − 1}
where equivalence between two objects is defined by permutations of
Symn. A cyclic combinatorial object is one fixed by the permutation
i 7→ i + 1 mod n.

Theorem
Suppose r , s are distinct primes with gcd(rs, φ(rs)) 6= 1. If n = r2 or
n = rs , then two cyclic combinatorial objects on n elements are
equivalent if and only if they are equivalent by elements chosen from a
specified list of at most φ(n) permutations.

Open Question
Does a similar result hold for other values of n with gcd(n, φ(n)) 6= 1?
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Theorem
Suppose r , s are distinct primes with gcd(rs, φ(rs)) 6= 1. If n = r2 11 or
n = rs 12, then two cyclic combinatorial objects on n elements are
equivalent if and only if they are equivalent by elements chosen from a
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Open Question
Does a similar result hold for other values of n with gcd(n, φ(n)) 6= 1?

11W. C. Huffman, V. Job, V. S. Pless, “Multipliers and generalized
multipliers of cyclic objects and cyclic codes”, J. Combin. Theory Ser. A 62
(1993), 183–215.

12W. C. Huffman, “The equivalence of two cyclic objects on pq elements,”
Discrete Math. 154 (1996), 103–127.
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Linear Cyclic Codes over Fq, gcd(n, q) 6= 1

What Changes

The ring PFq ,n is no longer semi-simple and xn − 1 has repeated
roots.

Notation

• Let p be the characteristic of Fq and n = pan where a ≥ 1
and p - n.

• Let α be a primitive nth root of unity and define
Mαs (x) =

∏
i∈Cs,q,n

(x − αi ).
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Linear Cyclic Codes over Fq, gcd(n, q) 6= 1 (cont.)

What Happens

• xn − 1 = (xn − 1)p
a

=
∏

s(Mαs (x))p
a

where s runs through a
set of representatives of all distinct q-cyclotomic cosets
modulo n.

• If g(x) is the generator polynomial of a linear cyclic code of
length n, then

g(x) =
∏
s∈S

(Mαs (x))is

where 1 ≤ is ≤ pa and s runs through some subset S of
representatives of distinct q-cyclotomic cosets modulo n.

• There are (pa + 1)m linear cyclic codes of length n where m is
the number of distinct q-cyclotomic cosets modulo n.

• Defining sets are unions of q-cyclotomic cosets modulo n but
must include multiplicity.

• The BCH Bound still holds when consecutive sets are defined
modulo n; the multiplicity does not improve the bound.
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Linear Cyclic Codes over Fq, gcd(n, q) 6= 1 (cont.)

History

• These cyclic codes are called repeated-root cyclic codes.

• Repeated-root cyclic codes were first studied in 1991 by J. H.
van Lint and Guy Castagnoli et al.

Theorem (Castagnoli et al.)

Let C be an [n, k , dH(C)]q linear repeated-root cyclic code. There
exists a linear (single-root) cyclic code C1 with parameters
[n, k1, dH(C1)]q such that

k1
n
≥ k

n
and

dH(C1)

n
≥ dH(C)

n
.
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13J. H. van Lint, “Repeated-root cyclic codes”, IEEE Trans. Inform. Theory
37 (1991), 343–345.

14G. Castagnoli, J. L. Massey, P. A. Schoeller, and N. von Seeman, “On
repeated-root cyclic codes”, IEEE Trans. Inform. Theory 37 (1991), 337–342.
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Linear Cyclic Codes over Z4

How Does Z4[x ] Differ From Fq[x ]?

• In Z4[x ], the degree of a product may be less than the sum of
the degrees.

• In Z4[x ], units are not necessarily constant polynomials (e.g.
1 + 2f (x)).

• Z4[x ] has divisors of zero, is not a unique factorization ring,
and is not a principal ideal ring.

Definition
f (x) ∈ Z4[x ] is irreducible over Z4 if f (x) is not a unit and
whenever f (x) = g(x)h(x) with f (x), g(x) ∈ Z4[x ], one of
f (x), g(x) is a unit.

Example (Factoring x4 − 1 over Z4)

Two factorizations of x4 − 1 into irreducibles:

x4 − 1 = (x − 1)(x + 1)(x2 + 1) = (x + 1)2(x2 + 2x − 1).
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Linear Cyclic Codes over Z4 (cont.)

Definition
The map ν : Z4[x ]→ F2[x ] is the reduction homomorphism where

ν(f (x)) = f (x) mod 2

(i.e. ν(0) = ν(2) = 0, ν(1) = ν(3) = 1, ν(x i ) = x i ).

Remark
ν is a surjective ring homomorphism with kernel

〈2〉 = {2s(x) | s(x) ∈ Z4[x ]}.

Definition
For R = Z4[x ] or F2[x ], two polynomials f (x), g(x) ∈ R are coprime
provided R = 〈f (x)〉+ 〈g(x)〉.

Two Tools

• A special case of Hensel’s Lemma.

• A special case of Graeffe’s Method.
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Linear Cyclic Codes over Z4 (cont.)

Theorem (Hensel’s Lemma)

Let f (x) ∈ Z4[x ]. Suppose ν(f (x)) = h1(x)h2(x) · · · hk(x) where
hi (x) ∈ F2[x ] are pairwise coprime. Then there exist
g1(x), g2(x), . . . , gk(x) ∈ Z4[x ] such that

(a) ν(gi (x)) = hi (x) for 1 ≤ i ≤ k,

(b) the gi (x) are pairwise coprime, and

(c) f (x) = g1(x)g2(x) · · · gk(x).

Theorem
Let n be odd. Then xn − 1 = g1(x)g2(x) · · · gk(x) where gi (x) are
unique monic irreducible pairwise coprime polynomials in Z4[x ].
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Linear Cyclic Codes over Z4 (cont.)

Graeffe’s Method

Step I For n odd, factor xn − 1 = h1(x)h2(x) · · · hk(x) where
hi (x) ∈ F2[x ] are irreducible over F2.

Step II Write hi (x) = ei (x) + oi (x) where ei (x), respectively oi (x), is
the sum of the terms of hi (x) of even, respectively odd,
exponent.

Step III Let gi (x
2) = ±(e(x)2 − o(x)2) ∈ Z4[x ] (sign chosen so gi (x

2)
is monic). Then ν(gi (x)) = hi (x), gi (x) are monic irreducible
pairwise coprime polynomials, and

xn − 1 = g1(x)g2(x) · · · gk(x) ∈ Z4[x ].



Linear Cyclic Codes over Z4 (cont.)

Example (Factoring x7 − 1 over Z4)

• x7 − 1 = (1 + x)(1 + x + x3)(1 + x2 + x3) ∈ F2[x ].

• h1(x) = 1 + x ; e1(x) = 1, o1(x) = x ; g1(x2) = ±(1− x2)
⇒ g1(x) = −1 + x

• h2(x) = 1 + x + x3; e2(x) = 1, o2(x) = x + x3;
g2(x2) = ±(1− (x + x3)2) = ±(1− x2 − 2x4 − x6)
⇒ g2(x) = −1 + x + 2x2 + x3

• h3(x) = 1 + x2 + x3; e3(x) = 1 + x2, o3(x) = x3;
g3(x2) = ±((1 + x2)2 − (x3)2) = ±(1 + 2x2 + x4 − x6)
⇒ g3(x) = −1− 2x − x2 + x3
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⇒ g1(x) = −1 + x

• h2(x) = 1 + x + x3; e2(x) = 1, o2(x) = x + x3;
g2(x2) = ±(1− (x + x3)2) = ±(1− x2 − 2x4 − x6)
⇒ g2(x) = −1 + x + 2x2 + x3

• h3(x) = 1 + x2 + x3; e3(x) = 1 + x2, o3(x) = x3;
g3(x2) = ±((1 + x2)2 − (x3)2) = ±(1 + 2x2 + x4 − x6)
⇒ g3(x) = −1− 2x − x2 + x3



Linear Cyclic Codes over Z4 (cont.)

Theorem
For n odd, let xn − 1 = g1(x)g2(x) · · · gk(x) where gi (x) are monic
irreducible pairwise coprime polynomials of degree di in Z4[x ]. Let
ĝi (x) =

∏
j 6=i gj(x). The following hold.

(a) If g(x) is a monic divisor of xn − 1, it is a product of gi (x)’s.

(b) PZ4,n = 〈ĝ1(x)〉 ⊕ 〈ĝ2(x)〉 ⊕ · · · ⊕ 〈ĝk(x)〉.
(c) If 1 ≤ i ≤ k , 〈ĝi (x)〉 = 〈êi (x)〉 where {êi (x) | 1 ≤ i ≤ k} are

idempotents of PZ4,n with êi (x)êj(x) = 0 for i 6= j and∑k
i=1 êi (x) = 1.

(d) If 1 ≤ i ≤ k , 〈ĝi (x)〉 ' Z4[x ]/〈gi (x)〉 and 〈ĝi (x)〉 is a Galois
ring of order 4di .

(e) Every ideal of PZ4,n is a direct sum of 〈ĝi (x)〉’s and 〈2ĝj(x)〉’s.



Linear Cyclic Codes over Z4 (cont.)

Theorem (Qian15)
For n odd, let C be a linear cyclic code over Z4 of length n, considered as
an ideal of PZ4,n. The following hold.

(a) There exist unique monic polynomials f (x), g(x), h(x) ∈ Z4[x ] with
xn − 1 = f (x)g(x)h(x) such that

C = 〈f(x)g(x)〉 ⊕ 〈2f(x)h(x)〉.

(b) There exist unique idempotents e(x),E(x) ∈ PZ4,n such that
〈f(x)g(x)〉 = 〈e(x)〉, 〈f(x)h(x)〉 = 〈E(x)〉, and

C = 〈e(x)〉 ⊕ 〈2E(x)〉 = 〈e(x) + 2E(x)〉.

Corollary
There are 3k linear cyclic codes over Z4 of odd length n where k is the
number of irreducible factors of xn − 1 ∈ Z4[x ].

15V. S. Pless and Z. Qian, “Cyclic codes and quadratic residue codes over
Z4”, IEEE Trans. Inform. Theory 42 (1996), 1594–1600.
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Linear Cyclic Codes over Z4 (cont.)

Idempotents in PZ4,n

Theorem
For n odd, let f (x) be a factor of xn − 1 in Z4[x ]. Let
b(x) ∈ F2[x ] such that b(x) is a binary idempotent in PF2,n and
〈b(x)〉 = 〈ν(f(x))〉. Let e(x) = (b(x)2) computed in Z4[x ]. Then
e(x) is the generating idempotent for 〈f(x)〉 in PZ4,n.



Linear Cyclic Codes over Z4 (cont.)

Example (n = 7)

• x7 − 1 = g1(x)g2(x)g3(x) =
(−1 + x)(−1 + x + 2x2 + x3)(−1− 2x − x2 + x3).

• ĝ2(x) = g1(x)g3(x).
ν(ĝ2(x)) = ν(g1(x))ν(g3(x)) = 1 + x + x2 + x4. In PF2,7, the
binary idempotent generator for 〈1 + x + x2 + x4〉 is
b2(x) = 1 + x + x2 + x4.
ê2(x) = 1 + 2x + 3x2 + 2x3 + 3x4 + 2x5 + 2x6 + x8.
ê2(x) = 1 + 3x + 3x2 + 2x3 + 3x4 + 2x5 + 2x6.

• ê1(x) = 3 + 3x + 3x2 + 3x3 + 3x4 + 3x5 + 3x6.

• ê3(x) = 1 + 2x + 2x2 + 3x3 + 2x4 + 3x5 + 3x6.



Linear Cyclic Codes over Z4 (cont.)
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• ê3(x) = 1 + 2x + 2x2 + 3x3 + 2x4 + 3x5 + 3x6.



Linear Cyclic Codes over Z4 (cont.)

Example (n = 7, f (x) = 1, g(x) = g1(x)g3(x), h(x) = g2(x))

• g(x) = 1 + x + 3x2 + 2x3 + x4, h(x) = −1 + x + 2x2 + x3.

• C = 〈f(x)g(x)〉 ⊕ 〈2f(x)h(x)〉 =
〈1 + x + 3x2 + 2x3 + x4〉 ⊕ 〈2 + 2x + 2x3〉.

• C has size 4324 with generator matrix:

1 1 3 2 1 0 0
0 1 1 3 2 1 0
0 0 1 1 3 2 1

2 2 0 2 0 0 0
0 2 2 0 2 0 0
0 0 2 2 0 2 0
0 0 0 2 2 0 2


.
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Linear Cyclic Codes over Z4 (cont.)

Example (n = 7, f (x) = 1, g(x) = g1(x)g3(x), h(x) = g2(x))

C = 〈g1(x)g3(x)〉 ⊕ 〈2g2(x)〉
= 〈ĝ2(x)〉 ⊕ 〈2ĝ1(x)〉 ⊕ 〈2ĝ3(x)〉
= 〈ê2(x)〉 ⊕ 〈2ê1(x)〉 ⊕ 〈2ê3(x)〉
= 〈ê2(x) + 2ê1(x) + 2ê3(x)〉
= 〈1 + x + x2 + 2x3 + x4 + 2x5 + 2x6〉



Linear Cyclic Codes over Z4 (cont.)

Definition
Let f (x) = a0 + a1x + · · ·+ adx

d ∈ Z4[x ] with ad 6= 0. Let
f ∗(x) = ±xd(f (x−1)) = ±(ad + ad−1x + · · ·+ a0x

d) with ±
chosen so that the leading coefficient of f ∗(x) is 1 or 2. f ∗(x) is
the reciprocal polynomial of f (x).

Theorem
If C = 〈f(x)g(x)〉 ⊕ 〈2f(x)h(x)〉 is a cyclic code of odd length n in
PZ4,n with f (x)g(x)h(x) = xn − 1, then xn − 1 = h∗(x)g∗(x)f ∗(x)
and C⊥E = 〈h∗(x)g∗(x)〉 ⊕ 〈2h∗(x)f∗(x)〉.
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Linear Cyclic Codes over Z4 (cont.)

Example (n = 7)

• g1(x) = −1 + x → g∗1 (x) = −1 + x

• g2(x) = −1+x+2x2+x3 → g∗2 (x) = −1−2x−x2+x3 = g3(x)

• g3(x) = −1−2x−x2+x3 → g∗3 (x) = −1+x+2x2+x3 = g2(x)



Linear Cyclic Codes over Z4 (cont.)
Example (n = 7, f (x) = 1, g(x) = g1(x)g3(x), h(x) = g2(x))
f ∗(x) = 1, g∗(x) = g1(x)g2(x), h∗(x) = g3(x).

C = 〈f(x)g(x)〉 ⊕ 〈2f(x)h(x)〉 = 〈g1(x)g3(x)〉 ⊕ 〈2g2(x)〉
C⊥E = 〈h∗(x)g∗(x)〉 ⊕ 〈2h∗(x)f∗(x)〉

= 〈g3(x)g1(x)g2(x)〉 ⊕ 〈2g3(x)〉
= 〈2g3(x)〉

C⊥E has size 24 with generator matrix:
2 0 2 2 0 0 0
0 2 0 2 2 0 0
0 0 2 0 2 2 0
0 0 0 2 0 2 2

 .
|C| · |C⊥E | = 4324 · 24 = 47

C⊥E = 〈2g3(x)〉 = 〈2ĝ1(x)〉 ⊕ 〈2ĝ2(x)〉 = 〈2ê1(x)〉 ⊕ 〈2ê2(x)〉
= 〈2ê1(x) + 2ê2(x)〉 = 〈2x3 + 2x5 + 2x6〉
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Linear Cyclic Codes over Zpm

The results on linear cyclic codes over Z4[x ] were generalized to
linear cyclic codes of length n over Zpm where p - n with p a
prime.16

Theorem
Let p - n. The following hold.

(a) xn − 1 = g1(x)g2(x) · · · gk(x) where gi (x) are monic
irreducible pairwise coprime polynomials in Zpm [x ].

(b) Let ĝi (x) =
∏

j 6=i gj(x). Then every ideal (i. e. linear cyclic
code over Zpm) of PZpm ,n is a direct sum of 〈ĝi (x)〉’s,

〈pĝj(x)〉’s,. . . ,〈pm−1ĝ`(x)〉’s.

(c) There are (m + 1)k linear cyclic codes over Zpm .

(d) For 1 ≤ i ≤ k , there exist ei (x) ∈ Zpm [x ] such that ei (x) is an

idempotent in PZpm ,n,
∑k

i=1 ei (x) = 1, and ei (x)ej(x) = 0.

(e) PZpm ,n is a principal ideal ring.

16P. Kanwar and S. R. López-Permouth, “Cyclic codes over the integers
modulo pm”, Finite Fields Appl. 3 (1997), 334–352.
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Linear Cyclic Codes over Zr , gcd(n, r) = 1
Let r be composite with prime factorization pm1

1 pm2
2 · · · pms

s . By the
Chinese Remainder Theorem, Zr ' Zp

m1
1
× Zp

m2
2
× · · · × Zpms

s
. This can

be exploited to describe linear cyclic codes over Zr of length n with
gcd(n, r) = 1 by reducing to the case of these codes over Zpm .

Some References

• I. F. Blake, “Codes over certain rings”, Inform. and Control 20
(1972), 396–404.

• I. F. Blake, “Codes over integer residue rings”, Inform. and Control
29 (1975), 295–300.

• E. Spiegel, “Codes over Zm”, Inform. and Control 35 (1977),
48–51.

• E. Spiegel, “Codes over Zm, revisited”, Inform. and Control 37
(1978), 100–104.

• B. S. Rajan and M. U. Siddiqi, “Transform domain characterization
of cyclic codes over Zm”, Appl. Algebra Engrg. Comm. Comput. 5
(1994), 261–275.
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Linear Cyclic Codes over Zr , gcd(n, r) 6= 1

When gcd(n, r) = 1, the roots of xn − 1 in some extension ring of
Zr are distinct, but not when gcd(n, r) 6= 1.

Some References

• T. Blackford, “Cyclic codes over Z4 of oddly even length”,
Discrete Appl. Math. 128 (2003), 27–46.

• T. Abualrub and R. Oehmke, “On the generators of Z4 cyclic
codes of length 2e”, IEEE Trans. Inform. Theory 49 (2003),
2126–2133.

• S. T. Dougherty and S. Ling, “Cyclic codes over Z4 of even
length”, Des. Codes Cryptogr. 39 (2006), 127–153.

• A. Sălăgean, “Repeated-root cyclic and negacyclic codes over
a finite chain ring”, Discrete Appl. Math. 154 (2006),
413–419.
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Linear Cyclic Codes over Zr , gcd(n, r) 6= 1 (cont.)

Theorem (Sălăgean)

Let R be a finite (commutative) chain ring and p the characteristic
of its residue field. If p | n, then PR,n is not a principal ideal ring.

Corollary

If n is even, PZ4,n is not a principal ideal ring.
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Linear Cyclic Codes over Noncommutative Rings
There has been a great deal of research on linear cyclic codes over
many different commutative rings where topics such as generating
polynomials, generating idempotents, size (type), minimum
distance, dual codes, decoding, etc. are considered. That is less so
for noncommutative rings.

Reference
M. Greferath, “Cyclic codes over finite rings”, Discrete Math. 177
(1997), 273–277.

Remark
If R is a ring with unity, xn − 1 ∈ R[x ] commutes with all
polynomials in R[x ]. Thus (xn − 1)R[x ] = R[x ](xn − 1), which we
still denote 〈xn − 1〉.

Definition
Let R be a finite (associative) ring with unity. A left-linear
(right-linear) code C of length n over R is a submodule of RR

n

(Rn
R).
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Definition
Let R be a finite (associative) ring with unity. A left-linear
(right-linear) code C of length n over R is a submodule of RR

n

(Rn
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Linear Cyclic Codes over Noncommutative Rings (cont.)

Remark
In what follows, R will be a finite (associative) ring with unity;
there is a right analogue to results stated for left modules.

Definition
A left linear cyclic code C of length n over R is a left ideal of
PR,n = R[x ]/〈xn − 1〉. C is a left splitting if it is a direct summand
of RPR,n.

Lemma
Let g(x)h(x) = xn − 1 for some g(x), h(x) ∈ R[x ]. The following
hold.

(a) h(x)g(x) = xn − 1.

(b) R(R[x ]g(x)) is a free module.

(c) R[x ]g(x) is a direct summand of RR[x ].
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Linear Cyclic Codes over Noncommutative Rings (cont.)

Corollary

If g(x) is a factor of xn − 1 in R[x ], then R(PR,ng(x)) is a
left-linear cyclic code and a left splitting of RPR,n.

Theorem
For a left linear cyclic code C of length n over R, the following are
equivalent:

(a) C is a left splitting code.

(b) There exists a divisor g(x) of xn − 1 in R[x ] such that
C = R(PR,ng(x)).

Remark
There are left linear cyclic codes that are not a left splitting.
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Generalizations of Cyclic Codes

Definition
If R is a commutative ring and λ ∈ R, C ⊆ Rn is λ-constacyclic or
λ-twisted if whenever (c0, c1, . . . , cn−1) ∈ C, then

(λcn−1, c0, . . . , cn−2) ∈ C.

If λ = −1, C is negacyclic.

Remark
Linear λ-constacyclic codes of length n can be viewed as ideals of
R[x ]/〈xn − λ〉.

Definition
Let C ⊆ Rn and ` a positive integer with ` | n. C is `-quasi-cyclic if
whenever (c0, c1, . . . , cn−1) ∈ C then

(cn−`, cn−`+1, . . . , cn−1, c0, . . . , cn−`−2cn−`−1) ∈ C.
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Considerations for Cyclic Codes over Rings

Suggestions

• Define cyclic codes.

• What is the setting to study these codes?

• How do you generate the cyclic codes?

• Is there anything like defining sets?

• Can you get dual codes easily?

• Are there bounds on the minimum distance?

• Is there anything like BCH codes?

• Is there an ‘easy’ way to decide equivalence?

• Classification.

• Encoding and decoding.

• What light do your cyclic codes shed on old cyclic codes?
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